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ABSTRACT

Minimizing memory requirements for program and data are critical objectives when syn-
thesizing software for embedded DSP applications. In prior work, it has been demonstrated that
for graphical DSP programs based on the widely-used synchronous dataflow model, an important
class of minimum code size implementations can be viewed as parenthesizations of lexical order-
ings of the computational blocks. Such a parenthesization corresponds to the hierarchy of loops in
the software implementation. In this paper, we present a dynamic programming technique for
constructing a parenthesization that minimizes data memory cost from a given lexical ordering of
a synchronous dataflow graph. For graphs that do not contain delays on the edges, this technique
always constructs a parenthesization that has minimum data memory cost from among all paren-
thesizations for the given lexical ordering. When delays are present, the technique may make
refinements to the lexical ordering while it is computing the parenthesization, and the data mem-
ory cost of the result is guaranteed to be less than or equal to the data memory cost of all valid
parenthesizations for the initial (input) lexical ordering.

Thus, our dynamic programming technique can be used to post-optimize the output for
any algorithm that schedules SDF graphs into minimum code size loop hierarchies. On several
practical examples, we demonstrate that significant improvement can be gained by such post-opti-
mization when applied to two scheduling techniques that have been developed earlier. That is, the
result of each scheduling algorithm combined with the post-optimization often requires signifi-
cantly less data memory than the result of the scheduling algorithm without post-optimization. We
also present an adaptation of our dynamic programming technique for post-optimizing an arbi-
trary (not necessarily minimum code size) schedule to optimally reduce the code size.
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1.  Background

This paper develops a dynamic programming technique for reducing memory require-

ments when synthesizing software from graphical DSP programs that are based on the synchro-

nous dataflow (SDF) model [10]. Numerous DSP design environments, including a number of

commercial tools, support SDF or closely related models [9, 14, 13, 15, 16]. In SDF1, a program

is represented by a directed graph in which each vertex (actor) represents a computation, an edge

specifies a FIFO communication channel, and each actor produces (consumes) a fixed number of

data values (tokens) onto (from) each output (input) edge per invocation.

Fig. 1 shows an SDF graph. Each edge is annotated with the number of tokens produced

(consumed) by its source (sink) actor, and the “D” on the edge from  to  specifies a unit delay.

Given an SDF edge , we denote the source and sink actors by  and , and we

denote the delay by . Each unit of delay is implemented as an initial token on the edge.

Also,  and  denote the number of tokens produced by , and consumed

by .

The first step in compiling an SDF graph is to construct a valid schedule, which is a

sequence of actor invocations that invokes each actor at least once, does not deadlock, and pro-

duces no net change in the number of tokens queued on each edge. For each actor in the valid

schedule, a corresponding code block, obtained from a library of predefined actors, is instantiated.

The resulting sequence of code blocks is encapsulated within an infinite loop to generate a soft-

ware implementation of the SDF graph [8].

In [10], efficient algorithms are presented to determine whether or not a given SDF graph

has a valid schedule, and to determine the minimum number of times that each actor must be fired

in a valid schedule. We represent these minimum numbers of firings by a vector , indexed by

1. This should not be confused with the use of “synchronous” in synchronous languages [1].

A B C
2 1 1 3

Figure 1. A simple SDF graph.
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the actors in . We refer to  as the repetitions vector of . Given an edge  in , we define

. (1)

Thus,  is the total number of tokens produced onto (consumed from)  in one period of

a valid schedule. The equality of the two products in (1) follows from the definition of the repeti-

tions vector. For Fig. 1, , and .

One valid schedule for Fig. 1 is . Here, a parenthesized term

 specifies  successive firings of the “subschedule” , and we may trans-

late such a term into a loop in the target code. This notation naturally accommodates the represen-

tation of nested loops. We refer to each parenthesized term  as a schedule loop. A

looped schedule is a finite sequence , where each  is either an actor or a schedule

loop.

A more compact valid schedule for Fig. 1 is . We call this schedule a

single appearance schedule since it contains only one lexical appearance of each actor. To a

good first approximation, any valid single appearance schedule gives the minimum code size cost

for in-line code generation. This approximation neglects second order affects such as loop over-

head and the efficiency of data transfers between actors. Systematic synthesis of single appear-

ance schedules is described in [3].

Given an SDF graph , a valid schedule , and an edge  in ,

denotes the maximum number of tokens that are queued on  during an execution of . For

example, if for Fig. 1,  and , then

 and . We define the buffer mem-

ory requirement of a schedule  by , where the

summation is over all edges in . Thus, , and

.

The lexical ordering of a single appearance schedule , denoted , is the

sequence of actors  such that each  is preceded lexically by .

Thus, . Given an SDF graph, an order-optimal

schedule is a single appearance schedule that has minimum buffer memory requirement from

G qG G e G

e( )TNSE qG e( )src( ) e( )prod×≡ qG e( )snk( ) e( )cons×=

e( )TNSE e

q A B C, ,( ) 3 6 2, ,( )= A B,( )( )TNSE B C,( )( )TNSE 6= =

B 2AB( )CA 3B( )C

nS1S2…Sk( ) n S1S2…Sk

nS1S2…Sk( )

V 1V 2…V k Vi

3A( ) 2 3B( )C( )

G S e G e S,( )max_tokens

e S

S1 3A( ) 6B( ) 2C( )= S2 3A 2B( )( ) 2C( )=

A B,( ) S1,( )max_tokens 7= A B,( ) S2,( )max_tokens 3=

S S( )buffer_memory e S,( )max_tokens∑≡

G S1( )buffer_memory 7 6+ 13= =

S2( )buffer_memory 3 6+ 9= =

S S( )lexorder

A1 A2 … An, , ,( ) Ai A1 A2 … Ai 1–, , ,

2 3B( ) 5C( )( ) 7A( )( )lexorder B C A, ,( )=
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among the valid single appearance schedules that have a given lexical ordering

In the model of buffering implied by our “buffer memory requirement” measure, each

buffer is mapped to an independent contiguous block of memory. Although perfectly valid target

programs can be generated without this restriction, it can be shown that having a separate buffer

on each edge is advantageous because it permits full exploitation of the memory savings attain-

able from nested loops, and it accommodates delays without complication [11]. Another advan-

tage of this model is that by favoring the generation of nested loops, the model also favors

schedules that have lower latency than single appearance schedules that are constructed to opti-

mize various alternative cost measures [11]. Combining the analysis and techniques that we

develop in this paper with methods for sharing storage among multiple buffers is a useful direc-

tion for further study.

In this paper we present a dynamic programming technique for post-processing a single

appearance schedule with the goal of generating a modified single appearance schedule that has a

significantly lower buffer memory requirement. The technique is an extension of the algorithm

developed in [12] for constructing single appearance schedules for chain-structured SDF graphs,

and a basic version of this technique, called Dynamic Programming Post Optimization

(DPPO), that applies to delayless, acyclic graphs was outlined in [12]. In this paper, we give a

detailed specification of DPPO, we generalize DPPO to handle delays and arbitrary topologies,

and we show that while DPPO always preserves the lexical ordering of the input schedule, our

generalization of DPPO, called GDPPO, may change the lexical ordering (for a graph that has

delays) and thus, that it may compute a schedule that has lower buffer memory requirement than

all single appearance schedules that have the same lexical ordering as the input schedule. Since

the introduction of the basic version of DPPO in [12], we have also developed and implemented

two heuristics, called APGAN and RPMC, for efficiently constructing single appearance sched-

ules that have low buffer memory requirement [2, 11] for acyclic graphs. In this paper, we present

experimental results that demonstrate the ability of GDPPO to significantly improve the schedules

constructed by APGAN and RPMC for practical SDF systems.

A distinguishing characteristic of this work, as compared to other work on memory opti-

mizations for SDF and related models, is that it focuses on the joint reduction of both code and



5

data memory requirements for uniprocessor implementations. In contrast, Govindarajan, Gao, and

Desai have developed scheduling algorithms to minimize data memory requirements, without

considering code size, in a parallel processing context [7]. Also, Lauwereins, Wauters, Ade, and

Peperstraete have proposed an extension to SDF called cyclostatic dataflow, which allows an

important class of applications to be described in such a way that significantly less token traffic is

required than the buffer activity that would result from the corresponding pure-SDF implementa-

tions [4]. However, the impact of this model on code size has not been explored in depth, nor have

code size optimizations been developed that exploit the unique features of cyclostatic dataflow.

In [17], Ritz, Willems, and Meyr present techniques for minimizing the memory require-

ments of a class of single appearance schedules that minimize the rate of context-switches

between actors. These schedules are called flat schedules since they do not apply any nested

loops. As implied above, the memory requirements associated with flat schedules are often signif-

icantly larger than the nested-loop schedules that we discuss in this paper, even if techniques are

applied to share memory among multiple buffers for the flat schedules [11]. For example for the

mobile satellite receiver example discussed in [17], an optimum single appearance schedule under

the criterion of Ritz, Willem and Meyr requires 1920 units of memory. In contrast, we have found

that the minimum achievable buffer memory requirement over all (not necessarily flat) single

appearance schedules is 1542 for this example, and this minimum value is achieved by the

APGAN heuristic, which is discussed in [2].

When there is enough memory to accommodate the minimum context-switch schedules of

[17], it is possible that these schedules will result in somewhat higher throughput than the sched-

ules discussed in this paper, although the difference in context-switch overhead can often be sig-

nificantly mitigated by the techniques described in [15]. However, when memory constraints are

severe, the techniques discussed in this paper are superior.

The basic structure of the dynamic programming techniques developed in this paper and in

[12] was inspired by Godbole’s dynamic programming algorithm for matrix-chain multiplication,

which is presented in [6].
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2.  Dynamic Programming Post Optimization

Suppose that  is a connected, delayless, acyclic SDF graph,  is valid single appearance

schedule for , , and  is an order-optimal schedule for

. If  contains at least two actors, then it can be shown [2] that there exists a

valid schedule of the form  such that

 and for some ,

 and . Furthermore,

from the order-optimality of , clearly,  and  must also be order-optimal.

From this observation, we can efficiently compute an order-optimal schedule for  if we

are given an order-optimal schedule  for the subgraph corresponding to each proper subse-

quence  of  such that (1). and (2).  or

. Given these schedules, an order-optimal schedule for  can be derived from a value of ,

 that minimizes

, where

 is the set of

edges that “cross the split” if the schedule parenthesization is split between  and .

DPPO is based on repeatedly applying this idea in a bottom-up fashion to the given lexical

ordering . First, all two actor subsequences , , ,

are examined and the minimum buffer memory requirements for the edges contained in each sub-

sequence are recorded. This information is then used to determine an optimal parenthesization

split and the minimum buffer memory requirement for each three actor subsequence

; the minimum requirements for the two- and three-actor subsequences are used

to determine the optimal split and minimum buffer memory requirement for each four actor sub-

sequence; and so on, until an optimal split is derived for the original -actor sequence

. An order-optimal schedule can easily be constructed from a recursive, top-down

G S

G S( )lexorder A1 A2 … An, , ,( )= Soo

G S( )lexorder,( ) G

SR iLBL( ) iRBR( )=

SR( )buffer_memory Soo( )buffer_memory= p 1 2 … n 1–( ), , ,{ }∈

BL( )lexorder A1 A2… Ap, ,( )= BR( )lexorder Ap 1+ Ap 2+ … An, , ,( )=

Soo iLBL( ) iRBR( )

G

Sa b,

Aa Aa 1+ … Ab, , , S( )lexorder b a–( ) n 2–( )≤ a 1=

b n= G x

1 x n<≤

S1 x,( )buffer_memory Sx 1+ n,( )buffer_memory e( )TNSE
e Es∈
∑+ +

Es e e( )src A1 A2 … Ax, , ,{ }∈ e( )snk Ax 1+ Ax 2+ … An, , ,{ }∈and( ){ }=

Ax Ax 1+

S( )lexorder A1 A2,( ) A2 A3,( ) … An 1– An,( )

Ai Ai 1+ Ai 2+, ,( )

n

S( )lexorder
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traversal of the optimal splits [11].

In the th iteration of this bottom up approach, we have available the minimum buffer

memory requirement  for each subsequence  that has less than or

equal to  members. To compute the minimum buffer memory requirement  associated

with an -actor subchain , we determine a value of

 that minimizes

, (2)

where  for all  and , the memory cost at the split if we split the subse-

quence between  and  is given by [2]1

, (3)

where

(4)

is the set of edges that cross the split.

3.  Extension to Arbitrary Topologies

DPPO can be extended to efficiently handle graphs that are not necessarily delayless,

although a few additional considerations arise. We refer to our extension as Generalized DPPO

(GDPPO). First, if delays are present, then , the lexical ordering of the input sched-

ule, is not necessarily a topological sort. As a consequence, generally not all parenthesizations of

the input schedule will be valid. For example, suppose that we are given the valid schedule

1.  The symbol gcd denotes the greatest common divisor.

r

b p q,[ ] Ap Ap 1+ … Aq, , ,( )

r b i j,[ ]

r 1+ Ai Ai 1+ … A j, , ,( )

k i i 1+ … j 1–, , ,{ }∈

b i k,[ ] b k 1+ j,[ ] ci j, k[ ]+ +

b x x,[ ] 0= x ci j, k[ ]

Ak Ak 1+

ci j, k[ ]
e( )TNSE

e Es∈
∑

qG Ax( ) i x j≤ ≤( ){ }( )gcd
------------------------------------------------------------------=

Es e e( )src Ai Ai 1+ … Ak, , ,{ }∈ e( )snk Ak 1+ Ak 2+ … A j, , ,{ }∈and( ){ }=

S( )lexorder
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 for Fig. 2. Then  clearly is not a topologi-

cal sort, and it is easily verified that the schedule that corresponds to splitting the outermost paren-

thesization between  and  —  — is not a valid schedule since there is

not sufficient delay on the edge  to fire 10 invocations of  before a single invocation of

.

Thus, we see that when delays are present, the set  defined in (4) no longer generally

gives all of the edges that cross the parenthesization split. We must also examine the set of back

edges

. (5)

Each  must satisfy

, (6)

otherwise the given parenthesization split will give a schedule that is not valid. To take into

account any nonzero delays on members in , and the memory cost of each of the back edges,

the cost expression of (2) for the given split gets replaced with

. (7)

Expression (7) gives the cost of spliting the subsequence  between

S 6A( ) 5 2C( ) 3B( )( )=

Figure 2. An SDF graph used to illustrate GDPPO applied to SDF graphs that have

nonzero delay on one or more edges. Here .A B C, ,( )q 6 15 10, ,( )=

A B C
5 2 2 3

6D

S( )lexorder A C B, ,( )=

C B 2 3A( ) 5C( )( ) 15B( )

B C,( ) C

B

Es

Eb e e( )snk Ai Ai 1+ … Ak, , ,{ }∈ e( )src Ak 1+ Ak 2+ … A j, , ,{ }∈and( ){ }=

e Eb∈

e( )delay
e( )TNSE

qG Ax( ) i x j≤ ≤( ){ }( )gcd
------------------------------------------------------------------≥

Es

b i k,[ ] b k 1+ j,[ ]
e( )TNSE

e Es∈
∑

qG Ax( ) i x j≤ ≤( ){ }( )gcd
------------------------------------------------------------------ e( )delay

e Es∈
∑ e( )delay

e Eb∈
∑+ + + +

Ai Ai 1+ … A j, , ,( ) Ak
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and  assuming that the subsequence  precedes  in

the lexical order of the schedule that will be implemented. However, if (6) is satisfied for all “for-

ward edges” , it may be advantageous to interchange the lexical order of

 and . Such a reversal will be advantageous whenever

the reverse split cost defined by

(8)

is less than the forward split cost computed from (7) — that is, whenever

. (9)

The possibility for reverse splits introduces a fundamental difference between GDPPO

and DPPO: if one or more reverse splits are found to be advantageous, then GDPPO does not pre-

serve the lexical ordering of the original schedule. This is not a problem since in such cases the

result computed by GDPPO will necessarily have a buffer memory requirement that is less than

that of an order-optimal schedule for . On the contrary, it suggests that GDPPO may

be applied multiple times in succession to yield more benefit than a single application — that is,

GDPPO can in general be applied iteratively, where the iterative application terminates when the

schedule produced by GDPPO produces no improvement over the schedule computed in the pre-

vious iteration.

Fig. 3 shows an example where multiple applications of GDPPO are beneficial. Here

, and the initial schedule is , so the initial lexical

ordering is . Upon application of GDPPO, the minimum cost for the subsequence

 is found to be , and the minimum cost for the subsequence  is found to occur

with a reverse split that has a cost of . The minimum cost for the “top-level” subsequence

 is taken as the minimum cost over the cost if the parenthesization is split between

and , which is equal to  from (8), and the minimum cost if the split occurs

between  and , which is . Thus, the former split is taken, and the result of

Ak 1+ Ai Ai 1+ … Ak, , ,( ) Ak 1+ Ak 2+ … A j, , ,( )

e Es∈

Ai Ai 1+ … Ak, , ,( ) Ak 1+ Ak 2+ … A j, , ,( )

b i k,[ ] b k 1+ j,[ ]
e( )TNSE

e Eb∈
∑

qG Ax( ) i x j≤ ≤( ){ }( )gcd
------------------------------------------------------------------ e( )delay

e Eb∈
∑ e( )delay

e Es∈
∑+ + + +

e( )TNSE
e Eb∈
∑ e( )TNSE

e Es∈
∑<

S( )lexorder

A B C, ,( )q 2 1 2, ,( )= S 2A( )B 2C( )=

A B C, ,( )

A B,( ) 2 B C,( )

2

A B C, ,( ) A

B 0 2 5 0+ + + 7=

B C 2 0 7 0+ + + 9=
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applying GDPPO once to  is the schedule , which has a buffer

memory requirement of , and a lexical ordering that is different from that of .

Since , it is conceivable that applying GDPPO to  can

further reduce the buffer memory requirement. Applying GDPPO to , we generate a minimum

cost of  — which corresponds to another reverse split — for , and we generate a mini-

mum cost of  for . Thus, we see that splitting  between  and  gives a cost

of , while splitting between  and  gives a cost of . The

result of GDPPO is thus the schedule , and a buffer memory requirement of . It

is easily verified that application of GDPPO to  yields no further improvement, and thus itera-

tive application of GDPPO terminates after three iterations.

Although the iterative application of GDPPO is conceptually interesting, we have found

that for all of the practical SDF graphs that we have applied it to, termination occurred after only

 iterations, which means that no further improvement was ever generated by a second applica-

tion of GDPPO. This suggests that when compile-time efficiency is a significant issue, it may be

preferable to bypass iterative application of GDPPO, and immediately accept the schedule pro-

duced by the first application.

GDPPO can be implemented efficiently by updating forward and reverse costs incremen-

tally. If we are examining the splits of the subsequence , and we have com-

puted the forward and reverse split costs  and  associated with the split between  and

Figure 3. An illustration of iterative application of GDPPO.
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C
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1

1

D

2D

S S1 2A( ) 1 2C( ) 1B( )( )=

7 S
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1 A C,( )
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2
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, , then the splits costs  and  associated with the split between

 and  can easily be derived by examining the output and input edges of . To

ensure that we ignore reverse splits (forward splits) that fail to satisfy (6) for all  ( )

a cost of  is added to the reverse (forward) split cost for

any input edge (output edge)  of  whose source (sink) is a member of

, and that does not satisfy (6). Similarly, for each output (input) edge  of

 whose sink (source) is contained in , and that does not satisfy (6),  is

subtracted from  ( ) since such an edge no longer prevents the split from being valid.

Choosing  so large has the effect of “invalidating” any cost  that has  added to it (without

a corresponding subtraction) since any minimal valid schedule has a buffer memory requirement

less than , and thus, any valid split will be chosen over a split that has cost .

If forward and reverse costs are updated in this incremental fashion, then GDPPO attains a

time complexity of 1 where  is the number of actors, if we can assume that the number

of input and output edges of each actor is always bounded by some constant . In the absence of

such a bound, GDPPO has time complexity that is , where  is the number of edges in

the input graph.

4.  Experimental Results

In [2], two heuristics, called APGAN and RPMC, are described for constructing single

appearance schedules that minimize the buffer memory requirement. APGAN is a bottom-up

clustering technique that has been found to perform well for graphs that have regular topological

structures and sample-rate changes. RPMC is a top-down technique based on a generalized mini-

1. A function  is  if for sufficiently large , is bounded above by a positive real multiple

of .

Ak 1+ i k j 1–( )<≤ Fk 1+ Rk 1+

Ak 1+ Ak 2+ Ak 1+

e Es∈ e Eb∈

M 1 e( )TNSE e( )delay+( )
e E∈
∑+⎝ ⎠

⎛ ⎞≡

e Ak 1+

Ak 2+ Ak 3+ … A j, , ,( ) e

Ak 1+ Ai Ai 1+ … Ak, , ,( ) M

Rk 1+ Fk 1+

M CM M

M CM

O nv
3( ) nv

f x( ) O g x( )( ) x f x( )
g x( )

α

O nenv
3( ) ne
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mum-cut operation that usually does not perform as well as APGAN on regular graphs, but often

significantly outperforms APGAN on graphs that have irregular structure. Thus, APGAN and

RPMC are complementary, — when one of the techniques fails to construct a good schedule, the

other can be expected to be find one [2].

Fig. 4 shows a screendump from the Ptolemy prototyping environment [5] that contains an

SDF description of a four channel, nonuniform filter bank. The single appearance schedule

obtained by APGAN on this system is

,

and the resulting buffer memory requirement is . After post-processing the schedule with

GDPPO, we obtain the schedule

,

which has a buffer memory requirement of  — a 10.5% improvement. Notice that in this

example, GDPPO has changed the lexical ordering, and thus, one or more reverse splits were

found to be beneficial.

The schedule returned by RPMC has a buffer memory requirement of , which is lower

than that obtained by the combination of APGAN and GDPPO. However, GDPPO is able to

improve the schedule obtained by RPMC even further. The result computed by GDPPO when

applied to the schedule derived by RPMC is

,
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which has a buffer memory requirement of .

Table 1 shows the results of applying GDPPO to the schedules generated by APGAN and

RPMC on several practical SDF systems. The columns labeled “% Impr.” show the percentage of

buffer memory reduction obtained by GDPPO. The QMF tree filter banks fall into a class of

graphs for which APGAN is guaranteed to produce optimal results [2], and thus there is no room

for GDPPO to produce improvement when APGAN is applied to these two examples. Overall, we

see that GDPPO produces an improvement in 11 out of the 14 heuristic/application combinations.

A “significant” (greater than 5%) improvement is obtained in 9 of the 14 combinations; the mean

improvement over all 14 combinations is 9.9%; and from the CD-DAT and DAT-CD examples,

we see that it is possible to obtain very large reductions in the buffer memory requirement with

GDPPO.

128

Table 1. Performance of GDPPO on several practical SDF systems.

Application
APGAN

 only
APGAN
+DPPO

%
Impr.

RPMC
only

RPMC
+ DPPO

%
Impr.

Nonuniform filter bank
(1/3, 2/3 splits, 4 channels)

153 137 10.5 131 128 2.34

Nonuniform filter bank
(1/3, 2/3 splits, 6 channels)

856 756 11.7 690 589 14.6

 QMF tree filter bank
(8 channels)

78 78 0 92 87 5.43

QMF tree filter bank
(6 channels)

166 166 0 218 200 8.26

Two-stage fractional
decimation system

140 119 15.0 133 133 0

CD-DAT
sample rate conversion

396 382 3.54 535 400 25.2

DAT-CD
sample rate conversion

205 182 11.2 275 191 30.5
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5.  Adaptation to Minimize Code Size for Arbitrary Schedules

We have applied the basic concept behind DPPO to derive an algorithm that computes an

optimally compact looped schedule (minimum code size) for an arbitrary sequence of actor fir-

ings. For example, consider the SDF graph in Fig. 5, and suppose that we are given the valid firing

sequence1  (this firing sequence minimizes the buffer memory requirement over

all valid schedules). If the code size cost (number of program memory words required) for a code

block for  is greater than the code size cost for , then the optimally compact looped schedule

for  is , whereas  is optimal if  has a greater code size cost than .

To understand how dynamic programming can be used to compute an optimally compact

loop structure, suppose that  is the given firing sequence, and let

 be any subsequence of  ( ). If the optimal loop structures for all

-length subsequences of  are available, then we determine the optimal loop structure for

 by first computing  for , where  denotes the

minimum code size cost for the subsequence . The value of  that minimizes

gives an optimum point at which to “split” the subsequence if  are not to be executed

through a single loop.

To compute the minimum cost attainable for  if  are to be executed through

a single loop, we first determine whether or not . If this holds, then  can be exe-

cuted through a single loop , and the code size cost is taken to be the code size

cost of  plus the code size overhead  of a loop. If , we determine whether or

not , and if so, then  can be implemented as

, and the code size cost is taken to be the sum of  and the costs of

1. By a firing sequence, we simply mean a schedule that contains no loops.

Figure 5. An SDF graph used to illustrate the problem of finding an optimally com-
pact loop structure for an arbitrary firing sequence.
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 and . Next, if  and , then we determine

whether or not . If this holds then  can be implemented as

, where  is an optimal loop structure for

. It is easily seen that an optimal loop structure  for executing  through

a single loop can be determined (if one exists) by iterating this procedure  times,

where  denotes the floor operator. If one or more loop structures exist for executing

through a single loop, then the code size cost of the optimal loop structure  is com-

pared to the minimum value of , , to determine an optimal loop structure for

; otherwise the optimal loop structure for  is taken to be that correspond-

ing to the minimum value of .

The time complexity of this technique for finding an optimal loop structure for the subse-

quence , given optimal looping structures for all -length subsequences, is

, and time complexity of the overall algorithm is , where  is the number

of firings in the input firing sequence. Thus, the problem of determining an optimal looping struc-

ture is of polynomial complexity when the size of a problem instance is taken to be the number of

firings in the given firing sequence. However, it should be noted that there is no polynomial func-

tion  such that the number of firings in a valid schedule (defined as the sum of the entries in

the repetitions vector) is guaranteed to be less than  for an arbitrary -actor SDF graph.

Thus, unlike DPPO and GDPPO, the algorithm developed in this section is not of polynomial

complexity in the size of the given SDF graph.

6.  Conclusion

This paper has developed a dynamic programming post optimization, called GDPPO, for

reducing the data memory cost of software implementations of synchronous dataflow graphs that

minimize code size for in-line code generation. We have presented data on several practical exam-

ples that shows that GDPPO can produce significant improvements when appended to either of

Ai Ai 1+ σ′ Ai Ai…Ai≠ σ′ Ai Ai 1+ Ai Ai 1+ …Ai Ai 1+≠

σ′ Ai Ai 1+ Ai 2+ …Ai Ai 1+ Ai 2+= σ′

j i– 1+( ) 3⁄( )SL Ai Ai 1+ Ai 2+( )( ) SL Ai Ai 1+ Ai 2+( )

Ai Ai 1+ Ai 2+ L Ai Ai 1+ …A j

j i– 1+( ) 2⁄

*

Ai Ai 1+ …A j L

Ck i k j<≤

Ai Ai 1+ …A j Ai Ai 1+ …A j

Ck

Ai Ai 1+ …A j j i–( )

O j i– 1+( )2( ) O n
4( ) n

P m( )

P m( ) m
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two existing heuristics, APGAN and RPMC, for constructing minimum code size schedules.

Since these two heuristics are fundamentally different in structure — one is based on top-down

partitioning, and the other is based on bottom-up clustering — we expect that GDPPO can yield

similar benefits when used to improve the performance of alternative scheduling algorithms. We

have also presented an adaptation of GDPPO to minimize the code size of an arbitrary synchro-

nous dataflow schedule.
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